Emergence of metastability in frustrated oscillatory networks: the key role of hierarchical modularity

> Enrico Caprioglio & Luc Berthouze Department of Informatics, University of Sussex

BRAINS vs ORCHESTRA

2x speed Ref. [1]

[1]: Bhushan et al (2016). "Temporal Non-Local Means Filtering Reveals Real-Time Whole-Brain Cortical Interactions in Resting fMRI". PLOS ONE. DOI:10.1371/journal.pone.0158504

BRAINS vs ORCHESTRA

https://www.clevelandorchestra.com/

[1]: Bhushan et al (2016). "Temporal Non-Local Means Filtering Reveals Real-Time Whole-Brain Cortical Interactions in Resting fMRI". PLOS ONE. DOI:10.1371/journal.pone.0158504

BRAINS vs ORCHESTRA

https://www.clevelandorchestra.com/

[1]: Bhushan et al (2016). "Temporal Non-Local Means Filtering Reveals Real-Time Whole-Brain Cortical Interactions in Resting fMRI". PLOS ONE. DOI:10.1371/journal.pone.0158504

*Oscillatory-based

METASTABILITY

a dynamical system that exhibits "unstable attractions", in which segregative and integrative tendencies coexist [2]

[2] F. Hancock et al (2023) "Metastability Demystified — the Foundational Past, the Pragmatic Present, and the Potential Future." Preprint MDPI AG

*Oscillatory-based

METASTABILITY

a dynamical system that exhibits "unstable attractions", in which segregative and integrative tendencies coexist [2]

WHOLE-BRAIN MODELS*

[2] F. Hancock et al (2023) "Metastability Demystified — the Foundational Past, the Pragmatic Present, and the Potential Future." Preprint MDPI AG

METASTABILITY

a dynamical system that exhibits "unstable attractions", in which segregative and integrative tendencies coexist [2]

WHOLE-BRAIN MODELS*

- is it actually metastable?
- many symmetry-breaking parameters
- is metastability critical?

[2] F. Hancock et al (2023) "Metastability Demystified — the Foundational Past, the Pragmatic Present, and the Potential Future." Preprint MDPI AG

HYPOTHESIS

The (brain's) hierarchically modular mesoscale structure alone can give rise to metastable dynamics and robust chimera states in the presence of phase frustration

HYPOTHESIS

The (brain's) **hierarchically modular** mesoscale structure alone can give rise to **metastable dynamics** and robust chimera states in the presence of **phase frustration**

> Crucially, in the absence of any other symmetrybreaking parameters

HYPOTHESIS

The (brain's) **hierarchically modular** mesoscale structure alone can give rise to **metastable dynamics** and robust chimera states in the presence of **phase frustration**

$$\frac{\mathrm{d}\theta_i}{\mathrm{d}t} = \omega - K \sum_{j}^{N} A_{ij} \sin\left(\theta_j - \theta_i - \alpha\right)$$

Phase-frustrated **identical** oscillators

Crucially, in the absence of any other symmetrybreaking parameters

METHODS 1

Community structured (Stochastic Block Model)

vary H

Hierarchically modular network (Nested Stochastic Block Model)

METHODS 1

ORDER

METASTABILITY

$\sigma(R) > 0$

METHODS 2

[3] Arenas, A., Díaz-Guilera, A., & Pérez-Vicente, C. J. (2006). Synchronization Reveals Topological Scales in Complex Networks. In Physical Review Letters

ORDER

DISORDER

METHODS 2

Local Order Parameter

$$R_{\rho_i} = Re\left[\frac{1}{|\rho_i|}\sum_{j\in\rho_i}^N \exp(i\theta_j)\right]$$

$$R_{\mu_i} = Re\left[\frac{1}{|\mu_i|}\sum_{j\in\mu_i}^N \exp(i\theta_j)\right]$$

1₁

MODULES

METASTABILITY:
$$\sigma^{2}_{MET}(\boldsymbol{R}_{\rho i}) = \langle \sigma(\boldsymbol{R}_{\rho i}) \rangle$$
$$\sigma^{1}(\boldsymbol{P}) = \langle \sigma(\boldsymbol{P}) \rangle$$

$$\sigma^{1}_{MET}(\mathbf{R}_{\boldsymbol{\mu}_{i}}) = \langle \sigma(\mathbf{R}_{\boldsymbol{\mu}_{i}}) \rangle$$

STABLE AND BREATHING CHIMERAS EMERGE AT THE POPULATIONS' LAYER R_{ρ_1}, R_{ρ_2}

STABLE AND BREATHING CHIMERAS EMERGE AT THE POPULATIONS' LAYER R_{ρ_1}, R_{ρ_2}

[4] D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, "Solvable Model for Chimera States of Coupled Oscillators," PRL

METASTABLE AND ALTERNATING CHIMERA STATES EMERGE AT THE POPULATION LEVEL

METASTABILITY:
$$\sigma_{MET}(\boldsymbol{R}_{\rho i}) = \langle \sigma(\boldsymbol{R}_{\rho i}) \rangle$$

METASTABLE DYNAMICS EMERGES AT THE MODULES' LAYER

METASTABLE DYNAMICS EMERGES AT THE MODULES' LAYER

NETWORK PARAMETERS AFFECT THE SPECTRAL GAPS

Connectome-Harmonic decomposition framework – Atasoy and colleagues

Laplacian Renormalization Group - Villegas and colleagues

NETWORK PARAMETERS AFFECT THE SPECTRAL GAPS

H is related to 1st spectral gap (population layer)

k is related to the 2nd spectral gap (modules layer)

SLOW MODES DETERMINE THE MACROSCOPIC DYNAMICS (iff there are two peaks in specific heat)

time

0.0

$$L' = \sum_{i < B_1 + 1} \lambda_i |\lambda_i\rangle \langle \lambda_i|$$

$$A'_{\alpha\beta} = -\langle \alpha | L' | \beta \rangle$$

SLOW MODES DETERMINE THE MACROSCOPIC DYNAMICS (iff there are two peaks in specific heat)

"ENSLAVED" [4] FAST MODES FLUCTUATE DEPENDING ON THE 2ND SPECTRAL GAP (i.e., distance between peaks in specific heat)

[4] Haken, H. (1983). Advanced Synergetics. In Springer Series in Synergetics. Springer Berlin Heidelberg.
[5] Mackay, M., Huo, S., & Kaiser, M. (2023). Spatial organisation of the mesoscale connectome: A feature influencing synchrony and metastability of network dynamics. In B. S. Gutkin (Ed.), PLOS Computational Biology

SO BASICALLY...

We found two distinct pathways to achieve metastability

- Instability of chimera states (similar to the OG Shanahan model)
- Fluctuations of the "enslaved" local order parameters

There exist an explicit relationship between the eigenmodes of the system and metastable states

The Laplacian renormalization group is quite good at identifying the relevant local order parameters

ANALYTICAL RESULTS?

Ott-Antonsen reduction approach is not obvious!

ANALYTICAL RESULTS?

Ott-Antonsen reduction approach is not obvious!

Murrav Shanahan

FURTHER WORK?

Software in the natural world: A computational approach to hierarchical emergence Fernando E. Rosas, Bernhard C. Geiger, Andrea I Luppi, Anil K. Seth, Daniel Polani, Michael Gastpar, Pedro A.M. Mediano

Is metastability an actual emergent process?

Solve the information bottleneck problem in which the Lagrange multipliers depend on the eigenvalues of the density matrix

ANALYTICAL RESULTS?

Ott-Antonsen reduction approach is not obvious!

Murrav Shanahan

FURTHER WORK?

Software in the natural world: A computational approach to hierarchical emergence Fernando E. Rosas, Bernhard C. Geiger, Andrea I Luppi, Anil K. Seth, Daniel Polani, Michael Gastpar, Pedro A.M. Mediano

Is metastability an actual emergent process?

Solve the information bottleneck problem in which the Lagrange multipliers depend on the eigenvalues of the density matrix

Address limitations: do these observations hold with the addition of structural heterogeneities (rich club, core-periphery etc)

THANK YOU!

All code and additional information available at: https://enricocaprioglio.github.io/Lucciole/projects/

No need to know how to code! Just download the .html file and open it in your favourite browser to play with the model.

Otherwise: <u>https://github.com/EnricoCaprioglio/Emergence-of-</u> metastability-in-frustrated-oscillatory-networks

You will also find:

- Density matrix formalism
- Coalition entropy
- Modulation of metastable states
- Heterogeneous frequencies study
- Structural perturbations study
- Derivation of the variation of the nested stochastic block model

@Lucciole@mathstodon.xyz

x.com/Enri_Capri @enricocaprioglio@bsky.social

The moogsoft Continuous Assurance

Luc Berthouze

Ryan Singh working on the Information bottleneck

Simon Farmer, UCL

Preprint: https://arxiv.org/abs/2405.14542

TAHNK YOU VERY MUCH!

Whole-system level analysis

