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MOTIVATION

Higher-order interdependencies are central features of complex systems, yet a mechanistic ex- ® Figure 1: (Top) All the non-isomorphic undirected
planation for their emergence remains elusive. For linear Gaussian systems of arbitrary dimen- \ unweighted graphs of size N = 3. (Bottom) All the
sion, we derive an expression for synergy-dominance in terms of signed network motifs in the sys- b > o non-isomorphic complete signed graphs of size
tem’s correlation matrix. We prove that: (i) antibalanced correlational structures ensure synergy- ¢ ¢ N = 3. Solid (dashed) edges indicate positive
dominance (i.e., negative O-information) (i3) antibalanced triads in the dyadic interaction matrix of (negative) connections or correlations.

Ornstein-Uhlenbeck processes are necessary for synergy-dominance. Our theoretical results thus Antibalanced triangles are the building blocks of

demonstrate that pairwise interactions alone can give rise to synergistic information in the absence
of explicit higher-order mechanisms. We provide empirical evidence for the analytical link between
information theory (IT) and structural balance theory (SBT) by performing an analysis similar to that

™o
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| ?‘ all antibalanced complete signed graphs of higher
‘,’ dimension (e.g., see insets in Fig. 2 bottom).

We use the set of all non-isomorphic complete

described in Saberi et al (2024) using fMRI data recorded during cognitive tasks. Our results high- balanced riangles antibalanced triangles signed graphs to represent all the possible corre-
light SBT as an instrumental conceptual framework to study higher-order interdependencies. lational structures of a system of size N.
Theoretical Results Empirical Validation
Static Systems Results The O-information for Gaussian systems X, defined as Q(X) = We providle empirical evidence (Fig. 3-5) for the relationship between the structural energy
Y TC(X_;) — (N — 2)TC(X), can be written as U=53) X ,ews V/dw), and the O-information Q2 using the dataset from Saberi et al., 2024.
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This expression is negative for synergy-dominated systems and positive for redundancy dom- 04 04 04
1k
inated systems. By expanding the log determinants using log | det(Z)] = — >~ ( kl) Te[WH), S 0.2 G 0.2] S 0.2
where W = X — I, we obtain
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where w = (i1,19,...,1;,11) € w” is a closed walk from the set of all closed walks of length £, Task: initi Task: inhib Task: shift
d(w) = Hle W, w;, denotes the weight of a walk, and |w| denotes the number of distinct 0.41 0.41 0.41
nodes in the closed walk. Eq. (2) renders explicit the link between the O-information and ~ ~ ~
the motifs in the correlational matrix of a Gaussian system. Namely, even-length closed walks 02 02 02
with d(w) > 0 and odd-length closed walks with d(w) < 0 contribute synergistically 0.0l - 0.0l 0.0- ~—
As per the structure theorem for antibalance, a graph G is antibalanced 08 -06 -04 02 00 08 06 -04 02 0.0 08 -06 -0.4 02 0.0
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if it can be partitioned into two non-overlapping sets of vertices, V;
and V5 (at least one non-empty), such that edges between vertices in Figure 3 () as a function of U for each triad in the correlation matrix of the whole brain across
g
the same set are negative and edges between nodes in distinct sets cognitive tasks. Synergistic ( ) triplets highlighted in purple ( ).
are positive.
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Thus, if W is the adjacency matrix of an antibalanced graph, d(w) > 0 when w is a walk of even i-g: ] e B i-g
length, and d(w) < 0 for odd-length walks, ensuring Eq. (2) to be negative. - (1):8t . ? e t ® | P . ? e : L4 ¢ P . ® e : ] ’(1’-8. .
Dynamical Systems Results \We consider continuous Ornstein-Ulenbech (OU) processes :g'g_ | | e L | ¢ | L | . 'g'g
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dX(t) = =X(t) - (I — A)dt + dW(t) (3) » 3 Z o L 3 = 3 = W O - 3 = W O - 3
where A s the intgrach’on matrix and W is a Wiener process with covarianc.e matrix equal to Task: initi Task: inhib Task: shift
I. If Ais symmetric and Schur stable, the covariance matrix X* of the resulting dynamics can ird ] ] o
be written as ¥* = 5(I — A)~L. Using this expression, we show for systems of size N = 3 that 0 o - 1
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where z = A9,y = A13, 2 = Asgg. Since |z|, |y|, |z| < 1, we require the interaction matrix to be = % < 5:') % 5 2SS 3 % = 5:') % 5 2 S = % = 5:') % 5 2 S
antibalanced (i.e., zyz < 1) for OU processes of size 3 to be synergy-dominated (Fig 2, top). = = © = = = © = = = © =
Next, we asked whether antibalanced interaction structures promote the emergence of syner- Figure 4 Z-scored group-level mean U and mean O-information across triads (€23) for each
gistic information in larger dynamical systems (Fig 2, bottom). canonical functional network across cognitive tasks. €3 is computed as the average O-
information across all triads within the same functional network.
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10498 i 1049 | " | Figure 5 Single-node mean contributions of Q (left) and U (right). Metrics were computed as
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 the average €2 and U across all triads in which each node participates. Results are shown for the
X X shifting task; each node is labeled according to the canonical network to which it belongs.
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i AT 02 & O o We proved that antibalanced pairwise interactions are necessary for synergy-dominance in linear Gaus-
o 00+ AN A o : = v % 005 % sian systems without higher-order mechanisms (Fig. 2), and that antibalanced correlational structures
= N </ - 0.1 "‘:5; =051 4 . E ensure synergy-dominance. In doing so, we reveal SBT as an instrumental conceptual lens for studying
Qj , g 22N 0.00 § higher-order interdependencies. We provide evidence of our analytically informed interpretation of
-0.2- v 47 0.0 3 00 <><><><> ® 5 the relation between SBT and IT by performing a similar analysis as in Saberi et al., 2024. We show
’_> Y | <><><><%> U : -0.05 that the structural energy and the O-information provide similar information about the system at three
v 4+ Aag - levels: whole network (Fig. 3), functional subnetwork (Fig. 4) and node levels (Fig. 5).
X no.1 a.nt.ibalalized trianzles * X no. an%i?)alanced tri:fgles Finally, it will be interesting to uncover the network-level dynamics—distinct from dynamics on net-

works with fixed topology—that lead to the formation of antibalanced interaction structures. In social
Figure 2: (Top) Numerical Q(X)* (left) and theoretical Q(X) (right) results for 3-dimensiona balance theory, the formation of balanced triangles has largely been linked to higher-order mechanisms

(e.g., triadic interactions), with only recent work showing that a simple pairwise homophily-based mech-
anism suffices Pham et al., 2022. Whether similar network mechanisms exist for the antibalanced case
IS an interesting and unexplored research question.

Ornstein-Uhlenbeck (OU) processes with varying interaction matrix elements A9 =z, Aj3 =y
and fixed Aoz = z = 0.25. Insets depict the unweighted complete signed graphs, with adjacency
matrix sign(A), corresponding to each quadrant (unlabeled since §2(X) is order invariant).

(Bottom) Mean €2(X) as a function of the number of antibalanced triangles in the interaction References
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