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MOTIVATION

Higher-order interdependencies are central features of complex systems, yet a mechanistic ex-

planation for their emergence remains elusive. For linear Gaussian systems of arbitrary dimen-

sion, we derive an expression for synergy-dominance in terms of signed network motifs in the sys-

tem’s correlation matrix. We prove that: (i) antibalanced correlational structures ensure synergy-

dominance (i.e., negative O-information) (ii) antibalanced triads in the dyadic interaction matrix of

Ornstein–Uhlenbeck processes are necessary for synergy-dominance. Our theoretical results thus

demonstrate that pairwise interactions alone can give rise to synergistic information in the absence

of explicit higher-order mechanisms. We provide empirical evidence for the analytical link between

information theory (IT) and structural balance theory (SBT) by performing an analysis similar to that

described in Saberi et al (2024) using fMRI data recorded during cognitive tasks. Our results high-

light SBT as an instrumental conceptual framework to study higher-order interdependencies.

Figure 1: (Top) All the non-isomorphic undirected

unweighted graphs of size N = 3. (Bottom)All the

non-isomorphic complete signed graphs of size

N = 3. Solid (dashed) edges indicate positive

(negative) connections or correlations.

Antibalanced triangles are the building blocks of

all antibalanced complete signed graphs of higher

dimension (e.g., see insets in Fig. 2 bottom).

We use the set of all non-isomorphic complete

signed graphs to represent all the possible corre-

lational structures of a system of size N .

Theoretical Results

Static Systems Results The O-information for Gaussian systems X, defined as Ω(X) =∑N
i=1 TC(X−i) − (N − 2)TC(X), can be written as
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This expression is negative for synergy-dominated systems and positive for redundancy dom-
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where W = Σ − I, we obtain
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where w = (i1, i2, . . . , ik, i1) ∈ wk is a closed walk from the set of all closed walks of length k,

d(w) =
∏k

i=1 Wwi,wi+1 denotes the weight of a walk, and |w| denotes the number of distinct

nodes in the closed walk. Eq. (2) renders explicit the link between the O-information and

the motifs in the correlational matrix of a Gaussian system. Namely, even-length closed walks

with d(w) > 0 and odd-length closed walks with d(w) < 0 contribute synergistically

As per the structure theorem for antibalance, a graph G is antibalanced

if it can be partitioned into two non-overlapping sets of vertices, V1
and V2 (at least one non-empty), such that edges between vertices in

the same set are negative and edges between nodes in distinct sets

are positive.

Thus, if W is the adjacency matrix of an antibalanced graph, d(w) > 0 when w is a walk of even

length, and d(w) < 0 for odd-length walks, ensuring Eq. (2) to be negative.

Dynamical Systems ResultsWe consider continuous Ornstein-Ulenbech (OU) processes

dX(t) = −X(t) · (I − A)dt + dW(t) (3)

where A is the interaction matrix and W is a Wiener process with covariance matrix equal to

I. If A is symmetric and Schur stable, the covariance matrix Σ? of the resulting dynamics can

be written as Σ? = 1
2(I − A)−1. Using this expression, we show for systems of size N = 3 that

Ω(X) < 0 if
−2xyz > (xy)2 + (xz)2 + (yz)2 − (xyz)2. (4)

where x = A12, y = A13, z = A23. Since |x|, |y|, |z| < 1, we require the interaction matrix to be

antibalanced (i.e., xyz < 1) for OU processes of size 3 to be synergy-dominated (Fig 2, top).

Next, we asked whether antibalanced interaction structures promote the emergence of syner-

gistic information in larger dynamical systems (Fig 2, bottom).

Figure 2: (Top) Numerical Ω(X)? (left) and theoretical Ω(X) (right) results for 3-dimensional
Ornstein–Uhlenbeck (OU) processes with varying interaction matrix elementsA12 = x, A13 = y
and fixedA23 = z = 0.25. Insets depict the unweighted complete signed graphs, with adjacency
matrix sign(A), corresponding to each quadrant (unlabeled since Ω(X) is order invariant).
(Bottom) Mean Ω(X) as a function of the number of antibalanced triangles in the interaction

matrix A. The lower bound indicates the lowest Ω(X) encountered in our numerical exploration
across all configurations with a specific no. of antibalanced triangles. Each data point for

the mean Ω(X) is coloured according to its corresponding mean structural energy value, U =(N
3
)−1 ∑

w∈w3 3
√

d(w), interpreted here as a measure of (anti)balance. Each interaction matrix

A was generated with spectral radius ρ(A) = 0.9 for all possible non-isomorphic complete

signed graphs of size N .

Empirical Validation

We provide empirical evidence (Fig. 3-5) for the relationship between the structural energy

U =
(N

3
)−1 ∑

w∈w3 3
√

d(w), and the O-information Ω using the dataset from Saberi et al., 2024.

Figure 3 Ω as a function of U for each triad in the correlation matrix of the whole brain across

cognitive tasks. Synergistic (redundant) triplets highlighted in purple (orange).

Figure 4 Z-scored group-level mean U and mean O-information across triads (Ω3) for each
canonical functional network across cognitive tasks. Ω3 is computed as the average O-

information across all triads within the same functional network.

Figure 5 Single-node mean contributions of Ω (left) and U (right). Metrics were computed as

the average Ω and U across all triads in which each node participates. Results are shown for the

shifting task; each node is labeled according to the canonical network to which it belongs.

CONCLUSIONS

Weproved that antibalanced pairwise interactions are necessary for synergy-dominance in linearGaus-

sian systems without higher-order mechanisms (Fig. 2), and that antibalanced correlational structures

ensure synergy-dominance. In doing so, we reveal SBT as an instrumental conceptual lens for studying

higher-order interdependencies. We provide evidence of our analytically informed interpretation of

the relation between SBT and IT by performing a similar analysis as in Saberi et al., 2024. We show

that the structural energy and the O-information provide similar information about the system at three

levels: whole network (Fig. 3), functional subnetwork (Fig. 4) and node levels (Fig. 5).

Finally, it will be interesting to uncover the network-level dynamics—distinct from dynamics on net-

works with fixed topology—that lead to the formation of antibalanced interaction structures. In social

balance theory, the formation of balanced triangles has largely been linked to higher-ordermechanisms

(e.g., triadic interactions), with only recentwork showing that a simple pairwise homophily-basedmech-

anism suffices Pham et al., 2022. Whether similar network mechanisms exist for the antibalanced case

is an interesting and unexplored research question.
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